首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12169篇
  免费   1999篇
  国内免费   2927篇
  2024年   9篇
  2023年   376篇
  2022年   262篇
  2021年   525篇
  2020年   693篇
  2019年   755篇
  2018年   645篇
  2017年   654篇
  2016年   652篇
  2015年   668篇
  2014年   675篇
  2013年   869篇
  2012年   588篇
  2011年   639篇
  2010年   559篇
  2009年   618篇
  2008年   705篇
  2007年   784篇
  2006年   728篇
  2005年   637篇
  2004年   589篇
  2003年   516篇
  2002年   485篇
  2001年   453篇
  2000年   426篇
  1999年   378篇
  1998年   325篇
  1997年   252篇
  1996年   236篇
  1995年   190篇
  1994年   175篇
  1993年   141篇
  1992年   156篇
  1991年   122篇
  1990年   108篇
  1989年   87篇
  1988年   53篇
  1987年   53篇
  1986年   49篇
  1985年   39篇
  1984年   41篇
  1983年   36篇
  1982年   39篇
  1981年   22篇
  1980年   20篇
  1979年   14篇
  1978年   16篇
  1977年   10篇
  1976年   7篇
  1975年   7篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
51.
  1. The growing pace of environmental change has increased the need for large‐scale monitoring of biodiversity. Declining intraspecific genetic variation is likely a critical factor in biodiversity loss, but is especially difficult to monitor: assessments of genetic variation are commonly based on measuring allele pools, which requires sampling of individuals and extensive sample processing, limiting spatial coverage. Alternatively, imaging spectroscopy data from remote platforms may hold the potential to reveal genetic structure of populations. In this study, we investigated how differences detected in an airborne imaging spectroscopy time series correspond to genetic variation within a population of Fagus sylvatica under natural conditions.
  2. We used multi‐annual APEX (Airborne Prism Experiment) imaging spectrometer data from a temperate forest located in the Swiss midlands (Laegern, 47°28'N, 8°21'E), along with microsatellite data from F. sylvatica individuals collected at the site. We identified variation in foliar reflectance independent of annual and seasonal changes which we hypothesize is more likely to correspond to stable genetic differences. We established a direct connection between the spectroscopy and genetics data by using partial least squares (PLS) regression to predict the probability of belonging to a genetic cluster from spectral data.
  3. We achieved the best genetic structure prediction by using derivatives of reflectance and a subset of wavebands rather than full‐analyzed spectra. Our model indicates that spectral regions related to leaf water content, phenols, pigments, and wax composition contribute most to the ability of this approach to predict genetic structure of F. sylvatica population in natural conditions.
  4. This study advances the use of airborne imaging spectroscopy to assess tree genetic diversity at canopy level under natural conditions, which could overcome current spatiotemporal limitations on monitoring, understanding, and preventing genetic biodiversity loss imposed by requirements for extensive in situ sampling.
  相似文献   
52.
SYNOPSIS Catalase activity of Paramecium tetraurelia decreased during autogamy and recovered to normal 5 days later. Autogamy also caused changes in the ciliate's sensitivity to natural ionizing radiations—the decrease in cell growth rate previously described in shielded cultures did not occur when autogamous cells were used. Maximum effect of shielding was observed in 11-day-old postautogamous cells. the role of the catalase in the mechanism of natural irradiation effect is discussed.  相似文献   
53.
Abstract. Nutrient conservation in vegetation affects rates of litter decomposition and soil nutrient availability. Although resorption has been traditionally considered one of the most important plant strategies to conserve nutrients in temperate forests, long leaf life‐span and low nutrient requirements have been postulated as better indicators. We aimed at identifying nutrient conservation strategies within characteristic functional groups of NW Patagonian forests on Andisols. We analysed C‐, N‐, P‐, K‐ and lignin‐concentrations in mature and senescent leaves of ten native woody species within the functional groups: broad‐leaved deciduous species, broad‐leaved evergreens and conifers. We also examined mycorrhizal associations in all species. Nutrient concentration in mature leaves and N‐ resorption were higher in broad‐leaved deciduous species than in the other two functional groups. Conifers had low mature leaf nutrient concentrations, low N‐resorption and high lignin/N ratios in senescent leaves. P‐ and K‐resorptions did not differ among functional groups. Broad‐leaved evergreens exhibited a species‐dependent response. Nitrogen in mature leaves was positively correlated with both N resorption and soil N‐fertility. Despite the high P‐retention capacity of Andisols, N appeared to be the more limiting nutrient, with most species being proficient in resorbing N but not P. The presence of endomycorrhizae in all conifers and the broad‐leaved evergreen Maytenus boaria, ectomycorrhizae in all Nothofagus species (four deciduous, one evergreen), and cluster roots in the broad‐leaved evergreen Lomatia hirsuta, would be possibly explaining why P is less limiting than N in these forests.  相似文献   
54.
Aim Africa is expected to face severe changes in climatic conditions. Our objectives are: (1) to model trends and the extent of future biome shifts that may occur by 2050, (2) to model a trend in tree cover change, while accounting for human impact, and (3) to evaluate uncertainty in future climate projections. Location West Africa. Methods We modelled the potential future spatial distribution of desert, grassland, savanna, deciduous and evergreen forest in West Africa using six bioclimatic models. Future tree cover change was analysed with generalized additive models (GAMs). We used climate data from 17 general circulation models (GCMs) and included human population density and fire intensity to model tree cover. Consensus projections were derived via weighted averages to: (1) reduce inter‐model variability, and (2) describe trends extracted from different GCM projections. Results The strongest predicted effect of climate change was on desert and grasslands, where the bioclimatic envelope of grassland is projected to expand into the desert by an area of 2 million km2. While savannas are predicted to contract in the south (by 54 ± 22 × 104 km2), deciduous and evergreen forest biomes are expected to expand (64 ± 13 × 104 km2 and 77 ± 26 × 104 km2). However, uncertainty due to different GCMs was particularly high for the grassland and the evergreen biome shift. Increasing tree cover (1–10%) was projected for large parts of Benin, Burkina Faso, Côte d’Ivoire, Ghana and Togo, but a decrease was projected for coastal areas (1–20%). Furthermore, human impact negatively affected tree cover and partly changed the direction of the projected change from increase to decrease. Main conclusions Considering climate change alone, the model results of potential vegetation (biomes) show a ‘greening’ trend by 2050. However, the modelled effects of human impact suggest future forest degradation. Thus, it is essential to consider both climate change and human impact in order to generate realistic future tree cover projections.  相似文献   
55.
Land‐cover change can alter the spatiotemporal distribution of water inputs to mountain ecosystems, an important control on land‐surface and land‐atmosphere hydrologic fluxes. In eastern Mexico, we examined the influence of three widespread land‐cover types, montane cloud forest, coffee agroforestry, and cleared areas, on total and net water inputs to soil. Stand structural characteristics, as well as rain, fog, stemflow, and throughfall (water that falls through the canopy) water fluxes were measured across 11 sites during wet and dry seasons from 2005 to 2008. Land‐cover type had a significant effect on annual and seasonal net throughfall (NTF <0=canopy water retention plus canopy evaporation; NTF >0=fog water deposition). Forest canopies retained and/or lost to evaporation (i.e. NTF<0) five‐ to 11‐fold more water than coffee agroforests. Moreover, stemflow was fourfold higher under coffee shade than forest trees. Precipitation seasonality and phenological patterns determined the magnitude of these land‐cover differences, as well as their implications for the hydrologic cycle. Significant negative relationships were found between NTF and tree leaf area index (R2=0.38, P<0.002), NTF and stand basal area (R2=0.664, P<0.002), and stemflow and epiphyte loading (R2=0.414, P<0.001). These findings indicate that leaf and epiphyte surface area reductions associated with forest conversion decrease canopy water retention/evaporation, thereby increasing throughfall and stemflow inputs to soil. Interannual precipitation variability also altered patterns of water redistribution across this landscape. Storms and hurricanes resulted in little difference in forest‐coffee wet season NTF, while El Niño Southern Oscillation was associated with a twofold increase in dry season rain and fog throughfall water deposition. In montane headwater regions, changes in water delivery to canopies and soils may affect infiltration, runoff, and evapotranspiration, with implications for provisioning (e.g. water supply) and regulating (e.g. flood mitigation) ecosystem services.  相似文献   
56.
Traditional ecological knowledge (TEK) is a potential source of ecological information. Typically TEK has been documented at the species level, but habitat data would be equally valuable for conservation applications. We compared the TEK forest type classification of ribereños, the non-indigenous rural peasantry of Peruvian Amazonia, to a floristic classification produced using systematically collected botanical data. Indicator species analysis of pteridophytes in 300 plots detected two forest types on non-flooded tierra firme, each associated with distinct soil texture and fertility, and one forest type in areas subject to flooding. Nine TEK forest types were represented in the same set of plots. Each TEK forest type was consistently (>82%) associated with one of the three floristic classes and there were also clear parallels in the ecological characterizations of the forest types. Ribereños demonstrated clear preferences for certain forest types when selecting sites for slash-and-burn agriculture and hunting. Our results indicate that the non-tribal inhabitants of Amazonia possess valuable TEK that could be used in biodiversity inventories and wildlife management and conservation for characterizing primary rain forest habitats in Amazonia.  相似文献   
57.
It was demonstrated experimentally that the vapors of a mesophase-generating solvent, i.e., a solvent forming a lyotropic liquid-crystalline phase with a polymer, changed the spatial structure and optical density of natural polysaccharides (cellulose acetates). In this process, the value of specific optical rotation of the polymer modified by the vapors varied in a wide range up to sign inversion. The action of vapors on the polymer follows a peculiar dose-effect pattern, with lower doses producing a stronger effect. Application of this approach to the study into specific structural characteristics of biopolymers, such as DNA, is proposed.  相似文献   
58.
59.
60.
For wild primates, demography studies are increasingly recognized as necessary for assessing the viability of vulnerable populations experiencing rapid environmental change. In particular, anthropogenic changes such as habitat loss and fragmentation can cause ecological and behavioral changes in small, isolated populations, which may, over time, alter population density and demographic structure (age/sex classes and group composition) in fragment populations relative to continuous forest populations. We compared our study population of Endangered black howler monkeys (Alouatta pigra) in 34 forest fragments around Palenque National Park (PNP), Mexico (62 groups, 407 individuals), to the adjacent population in PNP, protected primary forest (21 groups, 134 individuals), and to previous research on black howlers in fragments in our study area (18 groups, 115 individuals). We used χ2 and Mann–Whitney U tests to address the questions: (a) what is the current black howler demographic population structure in unprotected forest fragments around PNP? (b) How does it compare to PNP's stable, continuous population? (c) How has it changed over time? Compared to the PNP population, the fragment populations showed higher density, a significantly lower proportion of multimale groups, and significantly fewer adult males per group. The population's age/sex structure in the fragmented landscape has been stable over the last 17 years, but differed in a higher proportion of multifemale groups, higher density, and higher patch occupancy in the present. In the context of conservation, some of our results may be positive as they indicate possible population growth over time. However, long-term scarcity of adult males in fragments and associated effects on population demographic structure might be cause for concern, in that it may affect gene flow and genetic diversity. The scarcity of adult males might stem from males experiencing increased mortality while dispersing in the fragmented landscape, whereas females might be becoming more philopatric in fragments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号